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Abstract (Johnston & Miller 1994), Earth Observing Satellites (Pot-
We describe an innovative solution to the problem of ter & Gasch 1998)_and plane_tary rovers (S.mlth 2004). How-
scheduling astronomy observations for the Stratospheric Ob- ever, the S_OFIA ﬂ'.ght planning problem dlﬁers from these
servatory for Infrared Astronomy, an airborne observatory. problems in a variety of ways. Observations are feasible
The problem contains complex constraints relating the feasi-  over large, continuous regions of space and time. The mo-
bility of an astronomical observation to the position and time tion of the aircraft is governed by differential equations, and
e e e oo e the alfraft can be flown in any cifecton fr any lengih o
discrete choices (é.g. selection and sequencing of observa- time to enable an pbse_rvatlon. The prlnC|paI feasibility con-
tions) an-d COntinUOUS.O.ne.S (eg takeoﬁ time and Set“ng up dItIOI"I fOI‘ ObSGI‘V&tIOﬂS ISa n0n|lneal’ funCtIOﬂ over the SOlU'
observations by repositioning the aircraft). The problem also  tion to the equations of motion. As a consequence of these
includes optimization criteria such as maximizing observing factors, even though SOFIA has a "closed tour” constraint
H?SGCI\’IiVbhe”g. %rgﬂg%”t‘i)ogszéﬂ'?grn'zc;g% }ﬁtﬁtf"?;“g;mgt- s\{avt?sfy that makes it appear similar to problems such as the Trav-
all constraints. This novel apgroach gcorﬁbines heuristic ellng Salesperson Problem, there are no fixed waypoints to
echniques, and well-founded approximations that eliminate .
feasible solutions but greatly reduce computation time. differential equations and feasibility constraints makes it dif-
ficult to find good heuristics, and the expense of solving the
differential equations impacts solver performance.
Introduction In this paper, we describe a combination of heuristic

The Stratospheric Observatory for Infrared Astronomy S€arch, biased stochastic sampling, approximations and con-
(SOFIA) is NASAs next generation airborne astronomical tinuous optimization methods to produce an algorithm that
observatory. The facility consists of a 747-SP modified to &fficiently finds good solutions to the SOFIA flight planning
accommodate a 2.5 meter telescope. SOFIA is expected to Problem. The rest of the paper is organized as follows. We
fly an average of 140 science flights per year over it's 20 first formally describe the problem of planning Gl flights,
year lifetime, and will commence operations in early 2005. the constraints on flight plans, and the optimization criteria
The SOFIA telescope is mounted aft of the wings on the used to compare_valld flight plans. We then bnefl_y describe
port side of the aircraft and is articulated through a range of the search algorithm used to construct good flight plans,
20° to 60° of elevation. The telescope has minimal lateral Which combines heuristic search with stochastic sampling.
flexibility; thus, the aircraft must turn constantly to main-  Nitial experiments with this algorithm indicate that it spends
tain the telescope’s focus on an object during observations. Much of its time deciding what observation to schedule next.
A significant problem in future SOFIA operations is that of /e then describe a combination of well-founded approxima-
scheduling Facility Instrument (F1) flights in support of the  tions and continuous optimization techniques that allow us
SOFIA General Investigator (GI) program. Gls are expected to.e".m"?ate a Iarge_ number of expensive computations wh_|le
to propose small numbers of observations, and many obser- Still finding good flights. We describe experiments to vali-
vations must be grouped together to make up single flights. date the approach. Finally, we conclude and discuss future
Approximately 70 Gl flight per year are expected, with 5-15 work.
observations per flight.

The scope of the flight planning problem for supporting SOFIA's Choice
Gl observations with the anticipated flight rate for SOFIA
makes the manual approach for flight planning daunting.
There has been considerable success in automating observa
tion scheduling for ground-based telescopes (Bresina 1996),
space-based telescopes such as Hubble Space Telescop

The SFPP (Single Flight Planning Problem) consists of a
number of observation requests, a flight day, and a takeoff
and landing airport. The objective is to find a flight plan
at maximizes the summed priority of the observations per-
ormed while obeying the constraints governing legal flights.
*Universities Space Research Association The aircraft can perform two different classes of activities
TQSS Group, Inc. during a flight. Flight-legsrequire tracking an object and



are only legal if the object is within the telescope elevation not parallel sincé is a spheroid.) LeTp be the projection
limits throughout the observatiomead-legscan be used to of T ontoP: this is theobject azimutatp, and is given by
reposition the aircraft to enable flight-legs, but no observa-
tions are performed. A distinguished class of dead-legs are - - N -
used to take off and return to the landing airport. Tp=T— X ;N 1)

The input to the SFPP consists of a set of observation re- . [INi
guests, each consisting of the Right Ascension (RA) and LetV be the desired heading of the aircraft. The obser-
Declination (Dec), observation duration, priority, earliest vatory must track the object inducirib, subject to the con-
start time and Ia'gest end time; aﬂight da;e; initial fuel load;  gtraint that the angle betwedh and T'p is 270°, because
earliest takeoff time and latest landing times; and the des- e telescope points out the left-hand side of the aircraft. Let
ignated takeoff and landing airports (which need not be the R (270°) be a rotation matrix that rotates a vecayo®

same). The primary objective is to find a flight plan that = . . .
maximizes the summed priority of the observations of the aroundN, andv be the airspeed of the aircraft; then

observations performed. A secondary criteria is to maximize
efficiency (the proportion of the flight spent performing ob-
servations). Since it is intractable to find the best possible
plan, we limit ourselves to searching fgoodplans that per-
form many observations of high priority. Solving the SFPP
requires selecting the set of observations to service, ordering
them and inserting necessary dead-legs.

Unlike traditional scheduling problems studied in the Al
and OR communities, the principle constraint links the po-
sition of the aircraft and the time an observation begins to
the telescope elevation required to see the object. There are
few absolute temporal constraints on individual observations
and also few relative temporal constraints between observa-
tions. However, there are numerous combinations of posi-
tions and times at which observations are infeasible. While
it is possible to make observations feasible by reposition-
ing the aircraft or delaying the observation, poorly chosen
orderings can lead to inefficient flights with few scheduled
observations.

=

Constraints on Valid Flights

In this section we elaborate on the various constraints on
valid solutions to the SFPP. The constraints linking aircraft
motion and observation feasibility are the most important
component of the problem, so we describe them in detalil

here. (This description differs from that in previous work  rjgure 1: The Cartesian formulation of the instantaneous

(Frank & Kurklti 2003) in that it is simpler and more accu-  gquations of motion of the aircraft and the elevation. We
rate.) If an observation is scheduled, then it must be per- have exaggerated the spherdid

formed for the requested duration without interruption. As
we will see, the elevation depends on the coordinates of the
object being observed, the position of the aircraft, and the

time. SOFIA can view objects betweefi® and60° of ele- T
vation; checking this constraint requires first computing the V = vRg(270°) P 2)
aircraft's ground track throughout the course of the obser- [ITp||

vation. Figure 1 shows the interaction between the object’s = . .
position in the sky at a particular time, the aircraft’s ground Let H be the elevation vector with respecti We also

track, and the telescope elevation. The Earth is modeled aséquire the anglé, betweenH and Tp obey the constraint

an oblate spheroill,, whose surface is defined by the equa- 20° </ < 60° throughout an observation. Most targets are
tion Z 4+ Y2 + Z — 1 wherec < a sufficiently far from Earth that we can assule= T + S
2 a? c2 T .

Lecftp be the aircraft's current position, afide the (Side- E(r)%rz.vector calculus we then get the equation for the eleva-

real) time that the aircraft is at. Let S be the vector from
the center of to p. Let T be the vector defining the vec- . ( HTp )
tor to an astronomical objeet andP as the plane tangent h=cos™" | —=——=— (3)

to E atp. Leti,j,k be the unit vectors in the,y, z di- [IH]| TPl

rgctions respectively. LeN be the vector normal t@: T is a function ofo and®; this is because the Earth rotates

N = Bzi+ %j + ’L’,—gf{ (Note thatS andN are generally on its axis. The vectdI traces a circle of radiug® + y> =

a2



CQC;d, whered = |52 in 24 hours (see (Meeus 1991) for an
explanation of this).

The instantaneous changepnas the aircraft tracks is

‘fl—g = V. SinceV is a function ofT, it is a function ofo,p
andé. Solving for the ground track is necessary to compute
h and check the elevation constraints. It is worth noting that

this formulation also makes it easy to add the effect of winds
by adding the appropriate vectors¥g and also correct for
aircraft pitch by rotating abouV x N, but we omit these
for brevity. The ground track and elevation constraints are
solved using5-order Runge-Kutta (Ferziger 1981) with
error-adaptive step sizing.

The telescope is carried aboard a Boeing 747-SP aircraft.

The fuel consumption of each engine depends on the air-
craft weight, outside air temperature, drag, initial altitude

and final altitude. The fuel consumption constraints are rep-
resented in a lookup table provided by Boeing; space pre-
cludes describing the fuel consumption constraint in more
detail. A gridded wind and temperature model is available

to correct the ground track in the face of winds and provide
data for calculating fuel consumption.

ForwardPlanner()
# F is (initially empty) current flight plan
Select takeoff time
while not done
# E is (initially empty) set of feasible observations
for each unscheduled observation
if Feasibleg, F)
v=Evaluateg, F")
Add (o,v)to E
endfor
if E'is not empty
Use values to select from £
ExtendF by e; empty £/
else done
return F
end

Figure 2: A sketch of the SFPP Flight Planning Algorithm.

Algorithm Description

Figure 2 describes ForwardPlanner, an algorithm for solving
the SFPP (previously described in (Frank &It 2003)).

Evaluate(o, F)

# K is the maximum extension

ExtendF by o
repeat K times
# L is the (initially empty) set of feasible observations
for each unscheduled observatipnot in F'
if Feasiblef)
w=value of extending" by ¢
Add (¢, w)to L
end for
Use valuesy to selectf from L
ExtendF by f; empty L
end repeat
v is value of F'
return v

Figure 3: A sketch of the Evaluation method of the Forward-
Planner Algorithm. The flight plan is extended by an obser-
vationo, the best possible flight plan possible after adding
is approximated by adding up # additional observations.

to estimate the best flight plan possible after adding observa-
tion o. These short extensions are evaluated to estimate the
value of the best plan conditioned on adding the observation
o. When ForwardPlanner() decides how to extend a flight
plan or Evaluate() conducts its lookahead, the candidates are
evaluated using a heuristic. This heuristic is a weighted sum
of thepriority of the observations performed so far, #fé-
ciency(ratio of time spent observing to total flight time) of
the (incomplete) flight, the estimated time to return to the
designated landing airport, and the total time spent in turns.
(Details on the heuristics can be found in (Frank &rKli
2003)). The heuristic rank of each observation is treated as
the mass of a probability distribution used to select the next
observation. This technique is similar to Heuristic Biased
Stochastic Sampling (HBSS), a technique used for schedul-
ing ground based telescopes (Bresina 1996). This means
that the "best” candidate need not be selected at any stage
of the process, but has the highest probability of being se-
lected next. This has proved to be an effective strategy when
using inexpensive but somewhat inaccurate heuristics. The
process of evaluating the feasible observations and adding
the next observation to a flight is shown in Figure 4.

The principal cost of this algorithm is in the calls to Feasi-
ble(), where many flight-legs and dead-legs are constructed

ForwardPlanner combines progression based search, heurisio test the conditions on object elevation. LEtbe the

tics and stochastic sampling, resulting in a fast, incomplete
randomized algorithm. An observatioris considered fea-
sible at timef and positionp if there is adead-legof du-
ration < D after which the observation stays within the el-
evation limits for the required duration of the observation,
and the aircraft can fly to the landing airport after the ob-
servation is finished. 19 is an operational constraint, and
is not strictly speaking an algorithm parameter.) The func-
tion Feasible() performs a search for tsleortest dead-leg
that satisfies these conditions. Each feasible observaimon
evaluated by constructing a short extension to the flight plan;
this is performed by Evaluate(), as shown in Figure 3. After
addingo to the flight plan, up td< additional observations
are added to the flight plan. This "lookahead” is performed

number of observation requests, I&t be the lookahead
depth, and lef\/ be the maximum number of observations
that can be in any flight plan. Then the algorithm makes
O(N2?K M) calls to Feasible(); a proof of this appears in
(Frank & Kurkli 2003).

Improving Algorithm Performance

Stochastic sampling approaches like the one employed in
ForwardPlanner typically require many trials to find a good

solution. The faster each trial is, the faster a good solution
can be found. The predictive power of the heuristics is also



sired duration. If the aircraft can return to the landing airport
after completindboththis dead-leg and the observation, then
the observation is feasible, otherwise it is not feasible. We
next postpone the check unéfter deciding to add an ob-
servation to the flight plan (after the step Extefidy e in
Figure 2.) If the aircraft can't return to the landing airport
after performing the chosen observation and its shortest en-
abling dead-leg, then it is discarded and another observation
is chosen to extend the flight. This will reduce the expected
number of checks significantly when most observations are
feasible. Some observations previously considered feasible
will not pass this check, and so the set of flight plans that
can be produced by the algorithmrisstricted However,

this restriction will reduce the value of the flight plans found
only whenhigh priority observations are excluded late in the
flight. In practice we find comparable flight plans after mak-
Figure 4: ForwardPlanner's search. At each step, all feasible ing this modification with a modest increase in speed. In the
observations are considered as the next observation in theinterests of brevity, we do not report these results.

plan. For each feasible observation, an extension of the plan

is built using lookahead. The extensions are evaluated to A Condition for the Shortest Dead-Leg

determine which observation to perform next (the numbers )

inside each feasible observation.) The values are used to Even after reducing the number of checks to ensure that
construct a probability distribution used to choose the next the aircraft can land, brute force search is still required to
observation; each choice is indicated by a hexagon. find the shortest dead-leg that enables an observation. How-
ever, we can take advantage of the new restricted feasibility
condition by defining a function whose zeros correspond to
the shortest dead-leg enabling the observation. This sub-
problem can be efficiently solved by using zero-finding al-

Feasible Observations

&6

Lookahead

P(Orion) | P(Elvis)
0.7/0.9 |=0.2/0.9

Stochastic Choice

important, but not the focus of this paper. Our investigation
into the first version of ForwardPlanner algorithm revealed

that we spend a considerable amount of time deciding which
observations are feasible, and most of this feasibility testing
is performed in the lookahead phase of Evaluate() (in Figure

gorithms such as Newton’s Method. Because the resulting
formulation allows us to search the full continuous space of
dead-legs, we avoid discretizing the search space to enable

3). Feasibility testing is done by performing a brute force brute-force search, and may also fisttbrterdead-legs.
search for a short dead-leg. In the worst case, this requires  Using the new conditions on object feasibility, the dead-
ForwardPlanner to construct a very large number of legs; a leg construction phase of the feasibility check requires find-
typical number is500, 000, evenly split between flight-legs  ing the heading and duration of the shortest dead-leg that
and dead-legs. This is true even though the dead-leg durationenables the observation for a sufficient amount of time. A
is discretized and limited, as are the heading choices for the dead-leg may be necessary for one of two reasons: an ob-
enabling dead-leg. servation is not visible at the current position and time, or
In this section we describe how to change the solution an observation is not visible for long enough. We will treat
methodology to reduce the cost of checking feasibility with-  these cases separately.
out sacrificing performance. First we describe a modifica-  Consider thdeasible regiorof an observatiow at time6.
tion to the ForwardPlanner thegstrictsthe set of plans that  This region is the set of positions on the Earth from which
can be built, increasing speed with only a small impact on  the observation is visible, and is the annulus defined by two
the value of the flight plans found. We then show how to circles centered at the nadir position @fwhose radii are
replace the expensive brute force search for dead-legs by the coelevatiorimits of the telescope (in SOFIA's case, the
a continuous optimization problem whose solutions are the radii of these circles arg)° and70°). Suppose the aircraft
desired dead-legs, again increasing speed with minimal per- positionp is outside the feasible region at tirie We want
formance impact. the aircraft to be in the feasible region after completing the
. dead-leg, either by making the object rise or set by chang-
Restricting the Set of Plans ing posi%ion. NOW),/ the sh%rtest Ing would put theyaircr::if(‘t:l
The call to Feasible() may require a large number of expen- on theboundaryof the feasible region, as opposed to any-
sive checks to ensure that the aircraft can return to the land- where strictly inside it. This means that the object elevation
ing airport. In some cases, a short dead-leg enabling an ob- 2 will equal one of the two elevation limits after flying the
servation makes it impossible to return home, while a longer dead-leg. If the aircraft begins inside the inner circle of the
dead-leg both enables the observation and allows the aircraft annulus, then we want the object to be precisely at the the

to return to the landing airport. However, SOFIA will nor-
mally take off and land at the same airport, so the aircraft
will trivially be in range of the landing airport for at least
half the flight.

We change the call to Feasible() as follows: first, we find

upper telescope elevation limit 60°, while if it is outside
the outer circle, we want the object to be at the lower tele-
scope elevation limit o20°.

If the object was fixed relative to the ground, flying di-
rectly towards or away from the object would maximize the

the shortest dead leg that enables the observation for the de-rate of change of the object elevation. However, the object



(and therefore the feasible region) appears to move across
the Earth as the Earth rotates. A dead-leg that tracks tt
ject as it moves would not minimize the flight distance.
use the following intuition: we search for a dead-leg
endswith the aircraft flying either directly towards or
rectly away from the object to be observed. Intuitively,
is the correct policy when the object is nearly in view
near the end of longer dead-legs. Observatory policy
normally prevent dead-legs longer than a few tens of
utes, so this intuition will likely produce very short, if t
"locally optimal” dead-legs.

Suppose flying a dead-leg with initial headitépr dura:
tion d results in aircraft heading vectdiy at the aircraft:
new position. The angle betweenVy and the object a

imuth at the new positioT'p is given by:

r=cos ! (

Thus, we have the following problem: firicld such tha.
Fl(b7 d) = <f1 (b7 d)a f2(ba d)> = <07 O> Wherefl (ba d) =T
i.e. the difference between the object azimuth and the final
heading of the aircraft after flying the dead-leg defined by
b,d, andf>(b,d) = e — his the difference between the final
object elevation and the telescope elevation linttosest to
the initial object elevation.

Now consider the case where the object violates the ele-
vation limits at some point during the observation, regard-
less of whether or not it is initially visible. We see that
the flight track exits the annulus (and possible re-enters it
later on). In this case, we can set up a function very simi-
lar to that we used when the observation was initially out-
side the feasible region. We now want to fildl such that
Fy(b,d) = (f1(b,d), f3(b,d)) = (0,0), where f3(b,d) is
the difference between tlextremeobject elevation achieved
during the flight-leg and the telescope elevation limit vio-
lated during the observation. The intuition behind this is
that the dead-leg we wish to fly should just barely nudge
the ground track of the flight-leg inside the feasible region.
f1 remains the same. Figure 5 shows a situation in which
we would zeroF; while searching for a dead-leg. Initially,
the aircraft could not observe the object without the eleva-
tion exceeding the upper elevation limit, whose boundary is
shown. However, it is possible to flyl& minute dead-leg to
a new position, from which the maximum elevation achieved
during the flight-leg does not exceed the elevation limits.

Unlike the previous case, where we only needed to com-
pute the heading and object elevation at the end of the dead
leg, we now must find either the minimum or maximum of
the elevation over the course of the flight-leg. We perform
binary search over the ground track to find the extreme of
the object elevation.

In both cases, we have now reduced the problem of find-
ing the shortest dead-leg to the problem of finding a zero of
a function, which can be solved efficiently using a variety of
methods as long ak satisfies some simple conditions.
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Figure 5: Flying a short dead-leg to enable an observation.
The feasible region boundary shown is the upper elevation
limit. In this case we would zeré’ to search for the dead-
leg enabling this observation. The aircraft’s initial location
is shown at 10:00:00. The dead-leg lasisminutes, after
which the flight-leg begins. At 10:27:00 the object elevation
achieves a maximum; the figure also shows the feasible re-
gion at 10:27:00, and shows that the elevation limits are not
violated by the flight-leg. The flight leg ends at 10:35:00.

Properties of the dead-legs

The behavior of zero-finding algorithms depends on how
many zerod" has and how they are distributed. Also, the re-
sulting dead-legs may not be feasible given other constraints
on how the aircraft flies. We now analyze the zeros of the
functionsF; and F; and their corresponding dead-legs.

First of all, we observe that there are a countably infinite
number of zeros of botl; and ;. This does not pose a
serious problem; these zeros are widely separated, and some
require that the aircraft fly all the way around the world mul-
tiple times. The dead-leg duration restriction imposed by
the ForwardPlanner algorithm will eliminate long dead-legs.
However, Newton’s Method might not find the shortest dead
leg, and either incorrectly conclude that some observation is
not feasible or return a suboptimal dead-leg.

Also, not all zeros correspond to valid dead-legs. For ex-
ample, a dead leg whose duration is negative is impossible
for the aircraft to fly. Also, short dead-legs may violate the
minimum turn duration of the aircraft. A standard rate turn
for a 747 is 180 degrees in 2 minutes. If the heading change
and duration of the dead-leg violate this constraint, then the
minimum dead-leg is impossible to achieve, but a longer
dead leg might enable the leg. Under these circumstances,
Newton’s Method would incorrectly report that an observa-
tion is infeasible. Despite these potential drawbacks, this
approach imposes no limitations on the heading or durations



of the dead-legs, so it might find dead-legs that could not be
found by discretizing dead-leg durations and headings.

Finding dead-legs By Zeroing
In this section we will describe how to find dead-legs by
zeroingF, andFs.

Newton’s Method and Cramer’s Rule

Newton’s Method is our choice for finding the zerosiaf
andFs. Itis simple to implement and very fast (Gill, Mur-
ray, & Wright 1981). Newton’s Method requires an initial
guess for the zero; let this be denotgdd, with future it-
erates denoted;, d; . For functionsF' of 2 inputs and 2
outputs, the method proceeds as follows:

1. Computel'(b;, d;) = (f1(bi, di), f2(bi, di)) = (f1, f2)
2. Compute the Jacobian (matrix of partial derivatives):
0f1 (bi, ds) ofr (b, ds)

1= (e pen )=(0 1)

3. Compute the determinant df: |J| = ps — gr. If this is
smaller than error toleraneethen set.J| = ¢ (preserving
the sign of|J|).

p q
T S

. Compute the Cramer's Rule updaté = % and
_ fip—for
dd = 272
. Seth_l =b; +db anddi+1 =d; +dd

. A (bj11,dir1) = (0,0) or step limit reached, then halt,
otherwise go to step 1.

Directly calculating the derivatives of the functiog
and F5 is difficult because of the gridded wind model that
influences the ground track, which in turn influences the ele-
vation (remember, the elevation is a function of time and po-
sition). Consequently, we use finite differencing to compute
all of our derivatives numerically (Gill, Murray, & Wright
1981). ZeroingF; only requires constructing the dead-leg
preceding an observation, because evaluatingnly re-
quires the heading and the object elevation at the end of the
dead-leg. Zeroing, requires constructing both the dead-
leg and the flight-leg, because evaluatifigrequires the ex-
treme elevation of the object during the flight-leg. Of the
available schemes, we chose forward differencing over cen-
tered differencing because of the smaller number of function
evaluations required. Forward differencing requires eval-
uating F' a total of 3 times to compute the partial deriva-
tives. Thus, zeroind’; requires3 dead-leg constructions
per step, and zeroing, requires3 dead-leg constructions
and3 flight-leg constructions per step.

The Initial Guess

Algorithms like Newton’s Method are highly sensitive to the
closeness of the initial guess to the actual zero of the func-
tion. Newton’s Method haguadratic convergenceear a
zero, which (roughly) means that the number of correct dig-

using this methodology to find dead-legs should be an obvi-
ous performance win. However, we must make good initial
guesses to benefit from rapid convergence.

Guessing the initial heading requires determining how an
object’s elevation is changing, and choosing the flight direc-
tion to make the elevation change correctly. Guessing the
initial dead-leg duration requires estimating the change in
elevation that the dead-leg must achieve, and then estimat-
ing the rate of change of the elevation during the dead-leg.
Suppose that either the object is below the lower elevation
limit and rising or above the elevation limits and setting. In
this case we zerd@?. If the target is initially too high we
want it to set faster. In this case we want to fly away from
it, i.e. we gues$, = Ay — 180°. Similarly, if the object is
initially too low, we want it to rise faster, so we want to fly
towards it, i.e. we gueds = A;. Now suppose the object
is moving out of the feasible region. In these cases we zero
F5. If the object initially is rising, either it will rise con-
tinuously or eventually set. We want to make it rise slower
initially, set faster later, or both. In any case, we want to
fly away from the object, so we guelg = Ay — 180°. If
the object is initially setting, either it continually sets or sets
then rises; we either want it to set slower, rise faster, or both.
In any case, we want to fly towards the object, so we guess
bp = Ay. Only at high latitudes is it possible for an ob-
ject to move into and then out of the feasible region; under
these circumstances, we zefp. We might also find after
successfully zeroing that we must zerds.

Guessing the duration is somewhat more complex. Cal-
culating the maximum required change in elevatidh at
the current position and time is simple once we have calcu-
lated the test-leg. However, we have to account for the rate
of change of the elevation both as a function of time, and
the change in position as the aircraft flies. Defipas the
equatorial radius of the Earth,, as the latitude component
of the aircraft’s locatiorp, andv as the aircraft's estimated
ground-speed. We compute the instantaneous vectors of the
aircraft's ground speed and Earth’s rotation, then use the law
of cosines to determine the aggregate effect on the object el-
evation, resulting in the following guess;,; = 3406“;6 and
d Ahre

\/v2+va+2 Ov sm(bo)

Matters of Convergence

Newton’s Method depends on the function being zeroed to
obey some properties to guarantee convergence. Our func-
tions do not obey these properties all of the time, and so
Newton’s Method occasionally fails to converge.

Newton’s Method is "non-local”, in the sense that it can
generate any point if®? during any step. Thus, if is not
defined on every element &, Newton’s Method may fail
to converge to a solution even if one exisks.andF; are not
well defined for sufficiently short or long dead-leg durations.
The problem with long durations is due to the built-in nature
of the fuel model. Essentially, if a Newton step requires the
aircraft to fly long enough that it would run out of fuel, we

its in the guesses doubles at each step. The brute-force deadcan’t evaluate the ground track of the flight-leg. The prob-
leg search does a blind search over possible headings andlem with short durations has been explained above. Thus,

durations, so the number of correct digits in each guess im-
proves by only a constant factor (at best) each step. Thus,

convergence of Newton’s method may be interrupted if any
intermediate step violates one of these conditions. This is



a problem because it is conceivable that the zero found by
Newton’s method can correspond to a legitimate support-
ing dead-leg even if an iteration of Newton’s method cor-
responds to an impossible dead-leg. If the function or the
derivatives can't be evaluated during Newton’s Method, our
only option is to truncate the feasibility check and report that
the observation is not feasible. Additionally, we could find
Newton’s Method failing to converge after a large number of
steps; we thus use a cutoff value to terminate search. In prac-
tice, we found few instances when Newton's Method could
not establish the feasibility of an observation and using the
brute-force approach could do so.

Empirical Results

In this section we describe experiments designed to test the
value of using Newton’s Method to speed up the feasibility
check for ForwardPlanner.

Sample Problems

We used 24 of the problem instances described in (Frank
& Kurkli 2003) to determine the utility of our new tech-
nigues. We restricted our attention to the "Single Day” in-
stances; these contain betweeand11 observations. The
priorities of all observations are identical, and all observa-
tions can be scheduled on a designated flight day. Thus, the
principal goal is to find an efficient flight with all of the ob-
servations scheduled. The amount of lookahead influences
the number of leg-construction steps required to compute the
heuristics; for these experiments we set the lookahead depth
to 4. The maximum dead-leg duration was set to 4 hours.
For the brute-force search, we used a dead-leg duration in-
crement of 1 minute and a heading incremen?.6f. For
Newton’s Method we used a step cutoff of 150 and error
tolerancet = 106, The step parameters used in forward
differencing were:s; = 0.01° ands, = 60 seconds. Exper-
iments were run on a Sun Workstation with dual 600 MHz
CPUs and 2048 Mb memory. The aircraft takeoff weight
was fixed aR10, 000 pounds of fuel for all flights; this typ-
ically gives about 10 hour flights. The altitude was fixed at
35,000 feet. We ran ForwardPlanner 20 times with each of
the two feasibility methods. We compare the CPU times and
the best flight efficiency results for the cases in which both
approaches found a plan with all observations scheduled.

Figure 6 shows the average time to construct a single
flight plan, contrasting the brute force and Newton’s method
driven feasibility checks. The speedups realized when us-
ing Newton’s Method to check feasibility are dramatic for
all but a small number of very short (4 observations) flight
plans. In only 4 instances was either version of Forward-
Planner unable to schedule all observations to establish fea-
sibility. Figure 7 shows the maximum efficiency of the 20
flight plans constructed for the cases where both versions of
ForwardPlanner were able to schedule all observations. We
see that the efficiencies are quite comparable; thus, eliminat-
ing solutions has not resulted in worse flight plans.

CPU Speedup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Problem

OBrute @Newton

Figure 6: Performance improvements.

Efficiency of Best Flight
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Figure 7: Efficiency of the best flights.

To see how the reduction in the number of legs cor-
responded to computational improvements, we analyzed a
small number of flights from each of the takeoff airports.
We compared the number of flight-legs and dead-legs con-
structed using the brute-force dead-leg search approach and
Newton’s Method for establishing feasibility oved runs.

The results are shown in Figure 8. We see that the number of
leg construction steps is dramatically reduced, leading con-
sistently to increased speed. The speedup factor is typically
smaller than the reduction in the number of legs constructed
due to differences in the time required to construct flight-
legs versus dead-legs, and added overhead resulting from the
rest of Newton's Method such as the search for the minimum
or maximum elevation required when zeroifig
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Figure 8: Comparison of Newton’s Method and Brute Force
method of establishing observation feasibility on a small set
of sample problems.
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Figure 9: The SOFIA Flight Management System GUI.

SOFIA Flight Management

The SOFIA Flight Management System shown in Figure 9
is a software tool suite designed to facilitate the planning
of flights. ForwardPlanner is fully integrated with all other
software tools used to manage the flight plannning process
for SOFIA. Users can construct inputs for SFPPs by assem-
bling lists of observation requests and selecting flight days.
Flight plans produced by ForwardPlanner can be displayed
and superimposed on a variety of different maps, including
Special Use Airspace (SUA) boundaries. The graphical dis-
play includes pop-ups with information about the observa-
tion and the aircraft performance during the indicated leg.
The user can also display lists of scheduled and rejected ob-
servations in summary tables. Finally, users can simulate
flight plans in a number of ways to test their robustness to
uncertain conditions.

Conclusions and Future Work

We have described an application of Al techniques to the
problem of scheduling astronomy observations on an air-
borne telescope. The resulting problem has complex inter-
acting constraints, discrete and continuous decisions, as well
as competing optimization criteria. We reduced the num-
ber of expensive observation feasibility checks by a novel
combination of well-founded approximations and continu-
ous optimization. Despite the fact that these assumptions
eliminate some feasible flight plans, the new algorithms dra-
matically increase the speed of the algorithm at little cost in
terms of the value of the flight plans produced. The resulting

increase in speed improved the overall performance of the
original heuristic-driven stochastic sampling approach. This

approach can be employed for other planning and schedul-
ing problems with mixtures of discrete and continuous vari-

ables. By analyzing the nature of the continuous decisions,
it may be possible to reduce the set of options for these de-
cisions to the solutions of an optimization problem that can

be solved efficiently.

There are additional constraints that must be accounted
for by ForwardPlanner prior to deployment. First, the air-
craft must not cross any Special Use Airspace (SUA) zones.
While these zones are relatively sparse, they may generally
force longer dead-legs in flight plans. More importantly, the
observation requests will have constraints on line-of-sight
water vapor that must also be satisfied. The existing weather
predictions will include estimated water vapor, which fur-
ther constrains the aircraft’s trajectory, and will also gener-
ally lead to longer dead-legs. Handling these constraints will
impose further requirements on the feasibility check, poten-
tially requiring new approaches to ensure that good flight
plans can be produced quickly.
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